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 Given the theoretical distribution parameters p, what can 
we say about the data 

 Need a procedure to estimate p from D(x) 
  Common technique – fit! 

Theory/Model Data 

Data Theory/Model 

Probability 

Statistical 
inference  
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  Given a set of points 
and a function f(x,p) 
define the χ2 

  Estimate parameters by minimizing the χ2(p) with respect to all 
parameters pi 

  In practice, look for 

  Well known: but why does it work? Is it always right? Does it always 
give the best possible error? 

Value of pi at  
minimum is  
estimate for pi 

Error on pi is  
given by χ2  

variation of +1 

pi 

χ2 
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  An estimator is a procedure giving a value for a parameter or a 
property of a distribution as a function of the actual data values, e.g. 

  A perfect estimator is 

  Consistent:  

  Unbiased – With finite statistics you get the right answer on average 

  Efficient: 

  There are no perfect estimators! 

 Estimator of the mean 

 Estimator of the variance 

This is called the 
Minimum Variance Bound 
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 Definition of Likelihood  
  given D(x) and F(x;p) 

  For convenience the negative log of the Likelihood is often used 

 Parameters are estimated by maximizing the Likelihood, 
or equivalently minimizing –ln(L) 

NB: Functions used in likelihoods  
must be Probability Density Functions: 
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p 

  The estimator for the parameter variance is 

  I.e. variance is estimated from  
2nd derivative of –log(L) at minimum 

  Valid if estimator is  
efficient and unbiased! 

  Visual interpretation of variance estimate 
  Taylor expand log(L) around maximum 

From Rao-Cramer-Frechet 
inequality 

b = bias as function of p, 
inequality becomes equality 
in limit of efficient estimator 

ln
(L

) 

0.5 
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  In general, Maximum Likelihood estimators are 

  Consistent                (gives right answer for N∞) 

  Mostly unbiased       (bias ∝1/N, may need to worry at small N) 

  Efficient for large N  (you get the smallest possible error) 

  Invariant:                 (a transformation of parameters  
                                  will NOT change your answer, e.g                         

  MLE efficiency theorem: the MLE will be unbiased and efficient if an 
unbiased efficient estimator exists 

  Proof not discussed here for brevity 
  Of course this does not guarantee that any MLE is unbiased and 

efficient for any given problem 

Use of 2nd derivative of –log(L) 
for variance estimate is usually OK 
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  It’s not ‘right’ it is just sensible 

  It does not give you the ‘most likely value of p’ –  
it gives you the value of p for which this data is most likely 

  Numeric methods are often needed to find  
the maximum of ln(L) 

  Especially difficult if there is >1 parameter 
  Standard tool in HEP: MINUIT 

  Max. Likelihood does not give you a goodness-of-fit measure 
  If assumed F(x;p) is not capable of describing your data for any p,  

the procedure will not complain 
  The absolute value of L tells you nothing! 
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 Properties of χ2 estimator follow from properties of ML 
estimator 

 The χ2 estimator follows from ML estimator, i.e it is 
  Efficient, consistent, bias 1/N, invariant, 
  But only in the limit that the error σi is truly Gaussian 
  i.e. need ni > 10 if yi follows a Poisson distribution 

 Bonus: Goodness-of-fit measure – χ2 ≈ 1 per d.o.f  

Take log, 
Sum over all points xi 

The Likelihood function in p 
for given points xi(σi) 
and function f(xi;p) 

Probability Density Function 
in p for single data point yi±σi 
and function f(xi;p) 
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 Fitting determines best set of parameters  
of a given model to describe data 

  Is ‘best’ good enough?, i.e. 
  Is it an adequate description,  

or are there significant and  
incompatible differences? 

 Most common test: the χ2 test 

  If f(x) describes data then χ2 ≈ N,  if χ2 >> N something is wrong 
  How to quantify meaning of ‘large χ2’? 

‘Not good enough’ 



Imperial College, London -- Feb 2nd 2005 11 

 Probability distr. for χ2 is given by 

 To make judgement on goodness-of-fit,  
relevant quantity is integral of above: 

 What does χ2 probability P(χ2,N) mean? 
  It is the probability that a function which does genuinely describe 

the data on N points would give a χ2 probability as large or larger 
than the one you already have. 

  Since it is a probability, it is a number in the range [0-1] 
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  Example for χ2 probability 
  Suppose you have a function f(x;p) which gives a χ2 of 20 for 5 points 

(histogram bins).  
  Not impossible that f(x;p) describes data correctly, just unlikely 

  How unlikely?  

  Note: If function has been fitted to the data 
  Then you need to account for the fact that parameters have been 

adjusted to describe the data 

  Practical tips  
  To calculate the probability in PAW ‘call prob(chi2,ndf)’ 
  To calculate the probability in ROOT ‘TMath::Prob(chi2,ndf)’ 
  For large N, sqrt(2χ2) has a Gaussian distribution  

with mean sqrt(2N-1) and σ=1 
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  When sample size is very small, it may be difficult to find sensible 
binning – Look for binning free test 

  Kolmogorov Test 
1)  Take all data values, arrange in increasing order and plot cumulative 

distribution 
2)  Overlay cumulative probability distribution 

  GOF measure:  

  ‘d’ large  bad agreement; ‘d’ small – good agreement 
  Practical tip: in ROOT: TH1::KolmogorovTest(TF1&)  

calculates probability for you 

1) 2) 
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   χ2 fit is fastest, easiest 
  Works fine at high statistics  
  Gives absolute goodness-of-fit indication 
  Make (incorrect) Gaussian error assumption on low statistics bins 
  Has bias proportional to 1/N 
  Misses information with feature size < bin size 

  Full Maximum Likelihood estimators most robust  
  No Gaussian assumption made at low statistics 
  No information lost due to binning 
  Gives best error of all methods (especially at low statistics) 
  No intrinsic goodness-of-fit measure, i.e. no way to tell if ‘best’ is actually ‘pretty 

bad’ 
  Has bias proportional to 1/N 
  Can be computationally expensive for large N 

  Binned Maximum Likelihood in between 
  Much faster than full Maximum Likihood 
  Correct Poisson treatment of low statistics bins 
  Misses information with feature size < bin size 
  Has bias proportional to 1/N 
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 For most data analysis problems minimization of χ2 or     
–log(L) cannot be performed analytically 

  Need to rely on numeric/computational methods 
  In >1 dimension generally a difficult problem! 

 But no need to worry – Software exists to solve this 
problem for you: 

  Function minimization workhorse in HEP many years: MINUIT 
  MINUIT does function minimization and error analysis 
  It is used in the PAW,ROOT fitting interfaces behind the scenes 
  It produces a lot of useful information, that is sometimes 

overlooked 
  Will look in a bit more detail into MINUIT output and functionality 

next 
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 For all but the most trivial scenarios it is not possible to 
automatically find reasonable starting values of 
parameters 

  This may come as a disappointment to some… 
  So you need to supply good starting values for your parameters 

  Supplying good initial uncertainties on your parameters helps too 
  Reason: Too large error will result in MINUIT coarsely scanning 

a wide region of parameter space. It may accidentally find a far 
away local minimum 

Reason: There may exist  
multiple (local) minima 
in the likelihood or χ2 

p 

-l
o

g
(L

) 

Local  
minimum 

True minimum 
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 Fits to multi-dimensional data sets offer opportunities but 
also introduce several headaches 

  It depends very much on your particular analysis if fitting 
a variable is better than cutting on it 

Pro Con 
  Enhanced in sensitivity 

because more data and 
information is used 
simultaneously 

  Exploit information in 
correlations between 
observables 

  More difficult to visualize 
model, model-data 
agreement 

  More room for hard-to-find 
problems 

  Just a lot more work 

 No obvious cut,  
    may be worthwile to  
    include in n-D fit 

Obvious where to cut,  
probably not worthwile     
 to include in n-D fit  
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 Simplest way: take product of N 1-dim models, e.g 

  Assumes x and y are uncorrelated in data. If this assumption is 
unwarranted you may get a wrong result: Think & Check! 

 Harder way: explicitly model correlations by writing  
a 2-D model, eg.: 

 Hybrid approach: 
  Use conditional probabilities 

Probability for x, given a value of y 

Probability for y 
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  Overlaying a 2-dim PDF  
with a 2D (lego) data set  
doesn’t provide much insight 

  1-D projections usually easier 

x-y correlations in data and/or model difficult to visualize 

“You cannot do quantitative analysis with 2D plots” 
 (Chris Tully, Princeton) 
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  However: plain 1-D projections often don’t do justice to your fit 
  Example: 3-Dimensional dataset with 50K events, 2500 signal events 
  Distributions in x,y and z chosen identical for simplicity 

  Plain 1-dimensional projections in x,y,z 

  Fit of 3-dimensional model finds Nsig = 2440±64   
  Difficult to reconcile with enormous backgrounds in plots  

x y z 



Imperial College, London -- Feb 2nd 2005 21 

 Reason for discrepancy between precise fit result and 
large background in 1-D projection plot 

  Events in shaded regions of y,z projections can be discarded 
without loss of signal 

  Improved projection plot: show only events in x projection 
that are likely to be signal in (y,z) projection of fit model 

  Zeroth order solution: make box cut in (x,y) 
  Better solution: cut on signal probability according to fit model in 

(y,z)  

x y z 
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 Goal: Projection of model and data on x, with a cut on the 
signal probability in (y,z) 

 First task at hand: calculate signal probability according 
to PDF using only information in (y,z) variables 

  Define 2-dimensional signal and background PDFs in (y,z) 
by integrating out x variable (and thus discarding any information 
contained in x dimension) 

  Calculate signal probability P(y,z)  
for all data points (x,y,z) 

  Choose sensible cut on P(y,z) 
-log(PSIG(y,z)) 

Sig-like  
events 

 Bkg-like 
    events 
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  Next: plot distribution of data, model with cut on PSIG(y,z) 
  Data: Trivial 
  Model: Calculate projection of selected regions with Monte Carlo method  

1)   Generate a toy Monte Carlo dataset DTOY(x,y,z) from F(x,y,z) 

2)   Select subset of DTOY with PSIG(y,z)<C 

3)   Plot 

NSIG=2440 ± 64 

Plain projection (for comparison) Likelihood ratio projection 
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  Again, compute signal probability based on variables y and z 
  Plot x, weighted with the above signal probability 
  Overlay signal PDF for x 

  See http://arxiv.org/abs/physics/0402083 for more details on sPlots 

PRL 93(2004)131801 

B0K+π- 

B0K-π+ 
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 Warning: Goodness-of-fit measures for multi-dimensional 
fits are difficult 

  Standard χ2 test does not work very will in N-dim because of 
natural occurrence of large number of empty bins  

  Simple equivalent of (unbinned) Kolmogorov test in >1-D does 
not exist 

 This area is still very much a work in progress 
  Several new ideas proposed but sometimes difficult to calculate, 

or not universally suitable 
  Some examples 

  Cramer-von Mises (close to Kolmogorov in concept) 
  Anderson-Darling 
  ‘Energy’ tests 

  No magic bullet here 
  Some references to recent progress: 

  PHYSTAT2001, PHYSTAT2003 
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  Common situation: you want to fit  
a small signal in a large sample 

  Problem: small statistics does not  
constrain shape of your signal very well  

  Result: errors are large 

  Idea: Constrain shape of your signal  
from a fit to a control sample 

  Larger/cleaner data or MC sample with  
similar properties 

  Needed: a way to propagate the information from the control sample 
fit (parameter values and errors) to your signal fit 

Signal 

Control 
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 0th order solution:  
  Fit control sample first, signal sample second –  signal 

shape parameters fixed from values of control sample fit 
  Signal fit will give correct parameter estimates 
  But error on signal will be underestimated because uncertainties 

in the determination of the signal shape from the control sample 
are not included 

 1st order solution 
  Repeat fit on signal sample at p±σp 
  Observe difference in answer and add this difference in 

quadrature to error: 

  Problem: Error estimate will be incorrect if there is >1 parameter 
in the control sample fit and there are correlations between 
these parameters 

 Best solution: a simultaneous fit 
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 given data Dsig(x) and model Fsig(x;psig) and 
         data Dctl(x) and model Fctl(x;pctl) 

  construct χ2
sig(psig) and χ2

ctl(pctl) and 

 Minimize χ2
 (psig,pctl)= χ2

sig(psig)+ χ2
ctl(pctl) 

  All parameter errors, correlations automatically propagated 

Dsig(x), Fsig(x;psig) Dctl(x), Fctl(x;pctl) 
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  How to validate your fit? – You want to demonstrate that 
1)  Your fit procedure gives on average the correct answer ‘no bias’ 
2)  The uncertainty quoted by your fit is an accurate measure for the 

statistical spread in your measurement ‘correct error’ 

  Validation is important for low statistics fits 
  Correct behavior not obvious a priori due to intrinsic ML bias 

proportional to 1/N 

  Basic validation strategy – A simulation study 
1)  Obtain a large sample of simulated events 
2)  Divide your simulated events in O(100-1000) samples with the same 

size as the problem under study 
3)  Repeat fit procedure for each data-sized simulated sample 
4)  Compare average value of fitted parameter values with generated value 

 Demonstrates (absence of) bias 
5)  Compare spread in fitted parameters values with quoted parameter 

error  Demonstrates (in)correctness of error 
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 Example fit model in 1-D (B mass) 
  Signal component is Gaussian  

centered at B mass 
  Background component is  

‘Argus’ function (models phase  
space near kinematic limit) 

 Fit parameter under study: Nsig  
  Results of simulation study:  

1000 experiments  
with NSIG(gen)=100, NBKG(gen)=200 

  Distribution of Nsig(fit)  
  This particular fit looks unbiased… 

                                  Nsig(fit) 

Nsig(generated) 
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 What about the validity of the error? 
  Distribution of error from simulated  

experiments is difficult to interpret… 
  We don’t have equivalent of  

Nsig(generated) for the error 

 Solution: look at the pull distribution 

  Definition: 

  Properties of pull: 
 Mean is 0 if there is no bias 
 Width is 1 if error is correct 

  In this example: no bias, correct error 
within statistical precision of study 

σ(Nsig) 

                   pull
(Nsig) 
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 Special care should be taken when fitting small data 
samples 

  Also if fitting for small signal component in large sample 

 Possible causes of trouble  
   χ2 estimators may become approximate as Gaussian 

approximation of Poisson statistics becomes inaccurate 
  ML estimators may no longer be efficient 

 error estimate from 2nd derivative may become inaccurate 
  Bias term proportional to 1/N of ML and χ2 estimators may  

no longer be small compared to 1/sqrt(N) 

  In general, absence of bias, correctness of error can not 
be assumed. How to proceed? 

  Use unbinned ML fits only – most robust at low statistics 
  Explicitly verify the validity of your fit 
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  Low statistics example: 
  Scenario as before but now with  

200 bkg events and  
only 20 signal events (instead of 100) 

  Results of simulation study 

  Absence of bias, correct error at low statistics not obvious! 
  Small yields are typically overestimated 

NBKG(gen)=200 

NSIG(gen)=20 

Distributions become 
asymmetric at low statistics 

NSIG(fit) σ(NSIG) pull(NSIG) 

NSIG(gen) 

Pull mean is 2.3σ away from 0  
 Fit is positively biased! 
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 Practical issue: usually you need very large amounts of 
simulated events for a fit validation study 

  Of order 1000x number of events in your fit, easily >1.000.000 
events 

  Using data generated through a full GEANT-based detector  
simulation can be prohibitively expensive 

 Solution: Use events sampled directly from your fit 
function 

  Technique named ‘Toy Monte Carlo’ sampling 
  Advantage: Easy to do and very fast 
  Good to determine fit bias due to low statistics, choice of 

parameterization, boundary issues etc 
  Cannot be used to test assumption that went into model  

(e.g. absence of certain correlations). Still need full GEANT-
based simulation for that. 
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 How to sample events directly from your fit function? 
 Simplest: accept/reject sampling 

1)  Determine maximum of function fmax 
2)  Throw random number x 
3)  Throw another random number y 
4)  If y<f(x)/fmax keep x,  

otherwise return to step 2) 

  PRO: Easy, always works 
  CON: It can be inefficient if function  

         is strongly peaked. 
         Finding maximum empirically  
         through random sampling can 
         be lengthy in >2 dimensions 

x 

y 

fmax 



Imperial College, London -- Feb 2nd 2005 36 

 Fastest: function inversion 

1)  Given f(x) find inverted function F(x)  
so that f( F(x) ) = x 

2)  Throw uniform random number x 
3)  Return F(x) 

  PRO: Maximally efficient 
  CON: Only works for invertible functions 

Take –log(x) 
x 

-ln(x) 

Exponential 
distribution 
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 Hybrid: Importance sampling 

1)  Find ‘envelope function’ g(x)  
that is invertible into G(x) 
and that  fulfills g(x)>=f(x)  
for all x 

2)  Generate random number x  
from G using inversion method 

3)  Throw random number ‘y’ 
4)  If y<f(x)/g(x) keep x,  

otherwise return to step 2 

  PRO: Faster than plain accept/reject sampling 
        Function does not need to be invertible 

  CON: Must be able to find invertible envelope function 

G(x) 

y 

g(x) 

f(x) 
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ϒ(4s) 
βγ = 0.56 

Tag B 
σz ~ 110 µm Exclusive 

reconstructed B 
σz ~ 65 µm 

π- Δz 
Δt ≅ Δz/γβc 

K0 

γ	

D0 

π+ 

π+ 
K- 



Imperial College, London -- Feb 2nd 2005 39 

3. Reconstruct inclusively 
    the vertex of the “other” 
    B meson (BTAG) 

4. compute the proper time difference Δt 
5. Fit the Δt spectra 

1.  Fully reconstruct one B meson (BREC) 
2.  Reconstruct the decay vertex 

ϒ(4s) 
βγ = 0.56 

Tag B 
σz ~ 110 µm Exclusive 

reconstructed B 
σz ~ 65 µm 

π- Δz 
Δt ≅ Δz/γβc 

K0 

γ	

D0 

π+ 

π+ 
K- 
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ϒ(4s) 
βγ = 0.56 

Tag B 
σz ~ 110 µm Exclusive 

reconstructed B 
σz ~ 65 µm 

π- Δz 
Δt ≅ Δz/γβc 

K0 

γ	

D0 

π+ 

π+ 
K- 

1.  Fully reconstruct one B meson (BREC) 
2.  Reconstruct the decay vertex 

: 
B0 D*+ π- 

 → D0 π+ 
       →K-π+ 
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1.  Fully reconstruct one B meson (BREC) 
a) Classify signal and background 

Neutral  
B Mesons 

Charged  
B Mesons 

Energy substituted mass [MeV/c2] 

Utilize that @ BaBar, in case of signal, 
One produces exactly 2 B mesons, so their 
energy (in the center-of-mass) is half the  
center-of-mass energy of the collider  
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e-|Δt|/τ	


ϒ(4s) 
βγ = 0.56 

Tag B 
σz ~ 110 µm Exclusive 

reconstructed B 
σz ~ 65 µm 

π- Δz 
Δt ≅ Δz/γβc 

K0 

γ	

D0 

π+ 

π+ 
K- 
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 Must take into account the detector response 
  Convolve ‘physics pdf’ with ‘response fcn’ (aka resolution fcn) 
  Example: 

 Caveat: the real-world response function is somewhat 
more complicated  

  eg. additional information from the reconstruction of the decay 
vertices is used… 

e-|Δt|/τ	
 Resolution 
Function +      
Lifetime = ⊗	
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B0 Bkg Δt 
mES<5.27 GeV/c2 
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Δt (ps) 

signal   
+bkgd   
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     τ0  = 1.546 ± 0.032 ± 0.022 ps 

	
τ±  = 1.673 ± 0.032 ± 0.022 ps 

τ± /τ0 = 1.082 ± 0.026 ± 0.011 

Δt RF parameterization 

Common Δt response  
function for B+ and B0 

PRL  87 (2001) 

Δt (ps) 

sig
nal   
+b
kg
d   

Strategy:  fit mass, fix those parameters  
                then perform Δt fit. 
19 free parameters in Δt fit: 
           2 lifetimes 
           5 resolution parameters 
         12 parameters for empirical bkg 
                 description 

B0 B+ 
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 B mesons can ‘oscillate’ into B mesons – and 
vice versa 
  Process is describe through 2nd order weak diagrams  
    like this:  

Observation of B0B0 mixing in 1987 was the first 
evidence of a really heavy top quark… 
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3. Reconstruct Inclusively 
    the vertex of the “other” 
    B meson (BTAG)    
4. Determine the flavor of  
    BTAG to separate Mixed and 
    Unmixed events '

5. compute the proper time difference Δt  '
6. Fit the Δt spectra of mixed and unmixed events 

ϒ(4s) 

βγ = 0.56 

Tag B 
σz ~ 110 µm Reco B 

σz ~ 65 µm 

π+ Δz 
Δt ≅ Δz/γβc 

K0 

γ	


D- 

π- 
π- K+ 

1. Fully reconstruct one B meson 
    in flavor eigenstate (BREC)   
2. Reconstruct the decay vertex  
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b c 

d d 

l- 

ν
	


B0 D, D* 

W- 

Lepton Tag 

b 

d 

B0 

W- W+ 

c s 

K
*0 

d Kaon Tag 

ϒ(4s) 

βγ = 0.56 

Tag B 
σz ~ 110 µm Reco B 

σz ~ 65 µm 

π+ Δz 
Δt ≅ Δz/γβc 

K0 

γ	


D- 

π- 
π- K+ 
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The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and 
then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

perfect  
flavor tagging & time resolution 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open 
the file again. If the red x still appears, you may have to delete the image and then insert it again.

realistic  
mis-tagging & finite time resolution 

w: the fraction of wrongly tagged 
     events 

Δmd: oscillation frequency 
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• Counting matters! 

• Likelihood fit (implicitly!) uses the integrated 
rates unless you explicitly normalize both 
populations seperately 

• Acceptance matters! 

• unless acceptance for both populations is the 
same 

 Can/Must check that shape result consistent with 
counting 
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Fit Parameters 
Δmd        1 
Mistag fractions for B0 and B0 tags    8 
Signal resolution function(scale factor,bias,fractions)  8+8=16 
Empirical description of background Δt    19 
B lifetime fixed to the PDG value    τB = 1.548 ps 

Unbinned maximum likelihood fit to flavor-tagged neutral B sample 

44 total free parameters All Δt parameters 
extracted from data 
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No matter how you get the background 
parameters, you have to know them anyway. 
Could equally well first fit sideband only, in a 

separate fit, and propagate the numbers 
But then you get to propagate the statistical 

errors (+correlations!) on those numbers 
PRD 66 (2002) 032003 

MES<5.27 
MES>5.27 
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Δmd=0.516±0.016±0.010 ps-1 

P
R

D
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6 
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3. Reconstruct Inclusively 
    the vertex of the “other” 
    B meson (BTAG)    
4. Determine the flavor of  
    BTAG to separate B0 and B0      

5. compute the proper time difference Δt     
6. Fit the Δt spectra of B0 and B0 tagged events 

ϒ(4s) 

βγ = 0.56 

Tag B 
σz ~ 110 µm Reco B 

σz ~ 65 µm 

µ- Δz 
Δt ≅ Δz/γβc 

K0 

γ	


KS
0 

π- 
π+ 

1. Fully reconstruct one B meson 
    in CP eigenstate (BREC)   
2. Reconstruct the decay vertex √ 

µ+ 
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perfect  
flavor tagging & time resolution 

Mistag fractions w 
And  
resolution function R 

CP PDF 

realistic  
mis-tagging & finite time resolution 

Mixing PDF determined by the 
flavor sample 
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  Simultaneous fit to mixing sample and CP sample 
  CP sample split in various ways (J/ψ KS vs. J/ψ KL, …) 
  All signal and background properties extracted from data 

sin2β = 0.722 ± 0.040 (stat) ± 0.023 (sys) 
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• Compared to mixing fit, add 2 parameters: 
• CP asymmetry sin(2β), 
• prompt background fraction CP events) 

• And removes 1 parameter: 
•  Δm 

• And include some extra events… 

• Total 45 parameters 
• 20 describe background 

• 1 is specific to the CP sample 
• 8 describe signal mistag rates  
• 16 describe the resolution fcn 
• And then of course sin(2b) 

• Note: 
• back in 2001 there was a split in run1/run2, 
  which is the cause of doubling the resolution  
  parameters (8+3=11 extra parameters!) 

CP fit is basically the mixing fit, with a few more events  
(which have a slightly different physics PDF), and 2 more parameters… 
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Χ2=11.7/6 d.o.f. 
Prob (χ2)=7% 

Χ2=1.9/5 d.o.f. 
Prob (χ2)=86% 
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Wouter Verkerke (NIKHEF) 
      David Kirkby (UC Irvine)  

This talk comes with free software that helps you 
do many labor intensive analysis and fitting tasks  
much more easily 
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RooFit available at SourceForge  
to facilitate access and 

communication  
with all users 

Code access 
– CVS repository via pserver 

– File distribution sets for 
  production versions 
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Documentation 
Comprehensive  
set of tutorials  

(PPT slide show +  
example macros) 

Five separate 
tutorials 

More than 250 
slides and 20 

macros in total 

Class reference in THtml style 
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 Some material for further reading 
    
  R. Barlow, Statistics: A Guide to the Use of Statistical 

Methods in the Physical Sciences, Wiley, 1989 
  L. Lyons, Statistics for Nuclear and Particle Physics, 

Cambridge University Press, 

  G. Cowan, Statistical Data Analysis, Clarendon, 
Oxford, 1998  
(See also his 10 hour post-graduate web course: 
http://www.pp.rhul.ac.uk/~cowan/stat_course) 

http://www.slac.stanford.edu/~verkerke/bnd2004/data_analysis.pdf 


